If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48=16t^2+16t
We move all terms to the left:
48-(16t^2+16t)=0
We get rid of parentheses
-16t^2-16t+48=0
a = -16; b = -16; c = +48;
Δ = b2-4ac
Δ = -162-4·(-16)·48
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{13}}{2*-16}=\frac{16-16\sqrt{13}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{13}}{2*-16}=\frac{16+16\sqrt{13}}{-32} $
| 10x-3-4=3x+4 | | 4(g-1)=16 | | 2x(0)=0 | | 6x=2x=48 | | 3x2+2x-16=0 | | 5/8=n/2 | | |-6x+11|=-2x+4 | | 0=x4-2x3+14x2-6x+5 | | Y=4x+52 | | 2y(y+18)=180 | | 2(4x+2)=7(x-5) | | 3.3=6.5-0.8x | | 4x−3/3=7 | | 10-7a=-9a+3 | | 3m+(3-m)=-1 | | 2+10=-4f | | 5(m-4)=5(m+2) | | 2x-x=7=x+3+4 | | 14x+3-x=4x+48 | | 63x+46=10 | | 3(x-4)+6=5(x-1)=1 | | x^2-9x-1=-9 | | 4x+3(7-2x)=20 | | 1/(1.2-x)-2/x=0 | | 4(m+6)-3=0 | | 3m+(3-m)=1 | | m2+2m-24=0 | | (x-3/25)=(x-5/12) | | 4(3-3y-1)=40 | | 1/2x=11.88 | | -7t=5.7 | | .7x=11.30 |